
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Privacy-Preserving Greedy Link Scheduling for Wireless
Networks

Anonymous Author(s)

ABSTRACT
Link Scheduling is an important branch of wireless scheduling al-
gorithms for improving wireless throughput, with implications in
domains such as Industrial and Agricultural Internet of Things (IIoT
and AIoT), smart grids, and Vehicle Ad-Hoc Networks (VANETs).
Current approaches for efficient link scheduling primarily focus on
computing schedules that maximize the highest-weighted links in
a network among all possible schedules. These algorithms are not
designed for privacy, as they rely on information about the entire
network topology and device link weights. This paper proposes a
novel link scheduling algorithm called PriLink with built-in privacy
protections, link scheduling performances close to high-performing
greedy algorithms, and real-time execution times. PriLink provides
privacy benefits over existing algorithms as the entire network
topology is not shared, and devices share only links required for
computing the schedule hiding everything else. To our knowledge,
PriLink is the first implementation of a privacy-preserving link
scheduling algorithm. A comparison with high-performing greedy
algorithms (Greedy Maximal Scheduling, Local Greedy Scheduling,
and Distributed Greedy Scheduling) shows that the PriLink algo-
rithm achieves faster execution times than all algorithms and good
scheduling performance with link schedules about 3% lower than
the best-performing algorithm for wireless networks comprising 50
devices and about 5% lower for 250 devices. Regarding privacy, we
observe that PriLink can hide nearly 85% of network links for net-
works containing 50 devices from an honest-but-curious adversary.
For large networks containing 250 devices, the algorithm can hide
more than 95% of the links providing significant privacy benefits
for wireless network devices.

KEYWORDS
Wireless link scheduling, privacy preservation, greedy algorithms.

1 INTRODUCTION
The deployment of next-generation distributed multihop wire-
less networks is expected to be widespread across many appli-
cations, including Industrial and Agricultural Internet of Things
(IIoT and AIoT), smart grids, Vehicle Ad-Hoc Networks (VANETs),
and more [1, 7, 24]. An important consideration related to the effi-
ciency of these wireless networks is the use of efficient scheduling
algorithms. Link scheduling, in particular, is a good choice as it max-
imizes the weights of links that can be activated to transmit packets
on a channel at any given moment. An efficient link schedule would
ensure that the wireless spectrum and bandwidth are well utilized

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies YYYY(X), 1–13
© YYYY Copyright held by the owner/author(s).
https://doi.org/XXXXXXX.XXXXXXX

by wireless devices by (1) enabling high-priority transmissions to
occur and (2) minimizing the interference in the network during
such transmissions. The calculation of such an efficient schedule
involves coordinating device transmissions and encompasses tasks
such as link selection, ranking, and transmission (i.e., power alloca-
tion and coding schemes) [13, 21, 25].

Significant research has focused on link scheduling algorithms
for multihop wireless networks. The most optimal solution for
link scheduling requires solving a maximum weighted independent
set (MWIS) problem, which is NP-Hard [5, 18, 34]. As a result, re-
search efforts have focused on finding solutions that approximate
an optimal solution. Earlier research efforts focused on greedy ap-
proaches for link scheduling [8, 33, 34], while more recent efforts
have shifted to using ML-based solutions such as Graph Neural
Networks (GNNs), Recurrent Neural Networks (RNNs), and Spatial
Deep Learning [3, 32, 34]. In all the above approaches, the pri-
mary focus is on computing link schedules that enable the highest-
weighted devices to transmit simultaneously without interference
in the network. Another important consideration of the above ap-
proaches is execution time since these schedules must be computed
in real time for dynamic wireless networks.

The above efforts have designed solutions requiring knowledge
of the entire network to compute an efficient link schedule. In cen-
tralized link scheduling, all wireless devices must share their device
and link information with a central server [12, 34]. In decentral-
ized variations, devices must send information to other wireless
devices in the network to decentralize the link schedule calcula-
tion [9, 23, 34]. There is no focus on privacy in both cases since
the entire wireless network topology and the devices’ transmission
characteristics are known. We believe that privacy is an essential
consideration for link scheduling algorithms. These algorithms
may often be utilized in mission-critical activities (e.g., soldiers on
a battlefield) where revealing the network topology and devices’
transmission characteristics may be detrimental (e.g., loss of life
or the battle). Knowing the network topology and devices’ trans-
mission characteristics also increases the potential for abuse by an
adversary (e.g., a device on the network) who may use the informa-
tion about the topology to cause disruptions in the network (e.g.,
update their link weight to always transmit). This highlights a need
for link scheduling algorithms that provide privacy protections,
good scheduling performance, and real-time execution.

To address the above need, this work proposes a novel privacy-
preserving link scheduling algorithm called PriLink that has built-in
privacy protections, approaches link scheduling performances close
to greedy benchmark algorithms, and has faster execution times
than benchmark algorithms. The intuition behind PriLink is that
existing greedy algorithms (both centralized and distributed) focus
on the highest-weighted links in wireless networks, and other links
are discarded during the schedule computation. This led to the
hypothesis that a privacy-preserving link scheduling algorithm
that shares only the highest-weighted links can be designed. This

1

https://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

has the privacy benefits that (1) the entire network topology is
not shared with a central server, and (2) devices share only links
required for computing the schedule hiding everything else from a
potential adversary. In this paper, we first describe a PriLink base
algorithm design that achieves an upperbound privacy performance
where devices only reveal one link, their highest-weighted link. We
show that this base algorithm is a lowerbound on link scheduling
performance as it misses certain links found by greedy benchmark
algorithms. Then, we discuss the design of a privacy tolerance-
based PriLink algorithm that incorporates the notion of a privacy-
scheduling tradeoff. This tradeoff enables the PriLink algorithm to
achieve link schedules close to those achieved by greedy benchmark
algorithms with execution times still shorter than the benchmark
algorithms, with a slight compromise in privacy protections.

The PriLink algorithm was evaluated using simulated wireless
networks that mimicked sparse and dense wireless networks and
several different wireless network sizes. A comparison with high-
performing greedy algorithms (Greedy Maximal Scheduling (GMS)
[12, 13, 19], Local Greedy Scheduling (LGS) [10, 14], and Distributed
Greedy Scheduling (DGS) [11]) was made in terms of the link
scheduling performance, execution times, and privacy protections
achieved by PriLink.We observe that the PriLink algorithm achieves
good scheduling performance. For small networks (e.g., 50 devices),
the link schedules obtained are about 3% lower than LGS (the best-
performing algorithm). For large networks (e.g., 250 devices), the
schedules are about 5% lower than LGS. The algorithm outperforms
DGS in all our simulations. The execution times for PriLink were
better than all evaluated benchmark algorithms indicating that the
algorithm can be utilized for real-time scheduling. Regarding pri-
vacy, we observed that PriLink could hide nearly 85% of all links
in small networks (e.g., 50 devices) and more than 95% in large
networks (e.g., 250 devices).

In summary, our contributions are as follows.

• We propose a novel link scheduling algorithm called PriLink
with built-in privacy protections. To our knowledge, the
PriLink algorithm is the first design of a privacy-preserving
link scheduling algorithm.

• We compare PriLinkwith high-performing benchmark algo-
rithms. PriLink approaches scheduling performances close
to greedy benchmark algorithms (e.g., GMS, LGS) and out-
performs some algorithms such as DGS. It executes faster
than the benchmark algorithms.

• The PriLink algorithm achieves significant privacy protec-
tions. We observed that it could hide nearly 85% of all links
in small networks (e.g., 50 devices) and more than 95% of
links in large networks (e.g., 250 devices).

The rest of this paper is organized as follows. Section 2 introduces
the most relevant related work. Section 3 briefly discusses back-
ground information about link scheduling and privacy concerns
with current greedy approaches. Section 4 details the intuitions and
design of our privacy-preserving PriLink base and privacy tolerance
algorithm. Section 5 presents the performance of our algorithms in
terms of link scheduling performance, execution time, and privacy
benefits. Section 6 discusses the limitations of our algorithm and
future research directions. Finally, we conclude in Section 7.

2 RELATEDWORK
In this section, we introduce the most relevant works to PriLink:
specifically literature on link scheduling algorithms for wireless
networks and literature on privacy in the wireless domain.

2.1 Link scheduling for wireless networks
A significant effort has been made to optimize wireless network
link scheduling algorithms. The earlier algorithms in the litera-
ture focused on graph theory and greedy approaches to compute
link schedules that approximated an optimal solution. Their focus
centered on improving throughput while ensuring the algorithms
operated in real-time. An optimal link schedule is infeasible since
it requires solving a maximum weighted independent set (MWIS)
problem, which is NP-Hard. More recently, the efforts have shifted
to Machine Learning, which aims to train models that can compute
better schedules than traditional greedy approaches. Most of these
link scheduling schemes fall into two categories: (i) centralized link
scheduling and (ii) distributed link scheduling. Next, we will focus
on a subset of centralized and distributed algorithms that are most
relevant to our work.

Centralized link scheduling schemes require a central server
(serving as a coordinator) to gather all the devices and their link
weight information. Using the link weights, this central server
computes the link schedule using deterministic or heuristic ap-
proaches [18, 28, 34]. In terms of greedy approaches, one example
of relevant work is Leconte et al. [19]. They implemented the Greedy
Maximal Scheduling (GMS) algorithm and demonstrated improved
bounds for computing link schedules. Their algorithm focuses on
only local neighborhood information within the network graph
instead of the entire graph. Focusing on local information yields
good throughput and execution times, enabling their algorithm
to compute schedules for wireless networks of any size in near
real-time. In terms of Machine Learning, there has been a focus
on Graph-based Deep Learning approaches such as Graph Neural
Networks (GNNs). One example of a centralized GNN-based system
is a paper by Zhao et al. [34]. They demonstrate that GNNs are
well-suited for heuristic solutions for link scheduling. The intuition
of their work is that training a GNN makes it possible to learn
topological information about a wireless network and use the infor-
mation for weighting links. They show that it is feasible to achieve
schedules that outperform traditional link scheduling algorithms
by incorporating topological information.

Unlike their centralized counterparts, distributed link scheduling
schemes are focused on enabling wireless devices to compute link
schedules on their own instead of relying on a central server. They
typically implement solutions where link schedules are obtained
through an iterative process consisting of rounds of local changes
between graph vertices and their neighbors [4, 16, 27]. Like central-
ized algorithms, this class of algorithms has also seen deterministic
and heuristic approaches in the literature. In terms of greedy ap-
proaches, multiple relevant distributed greedy algorithms such as
Local Greedy Scheduling (LGS), Local Greedy Scheduling Enhance-
ment (LGS-E), Local Greedy Scheduling with Two contention mini-
slots (LGS-Two), and Greedy Coloring have been proposed [14].
These algorithms are focused on building decentralized variations
of the centralized GMS algorithmwhile achieving schedules close to

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Privacy-Preserving Greedy Link Scheduling for Wireless Networks Proceedings on Privacy Enhancing Technologies YYYY(X

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

)

GMS. There are also ML-based distributed solutions published more
recently. For instance, Zhao et al. propose a distributed scheduling
MWIS solver using GNNs where a trainable GCN module can learn
node topology to improve the topological information of the graph
with good generalizability and a low increase in complexity [33].
The same group also proposed a delay-oriented distributed sched-
uler based on GCNs with deep Q learning, where the algorithm
is aware of the dependency between the current backlogs of the
network and the schedule of the previous time slot [35]. Joo et al.
propose a distributed greedy approximation to MWIS for schedul-
ing with fading channels, which has the throughput and the delay
close to the optimal max weight that solves MWIS at each time [11].
Another work Cui et al. proposes a Spatial Deep Learning approach
to compute interfering nodes during channel estimation and to
schedule links efficiently based on the geographic locations of the
transmitters and the receivers [3].

Our motivation for this effort aligns with the above-discussed
prior works in that our goal is also to generate efficient link sched-
ules that can be computed in real-time. At the same time, our ap-
proach differs significantly from prior works because our designed
algorithm is the only one, to the best of our knowledge, that takes
a privacy-preserving approach where devices only reveal the link
weights required by the algorithm to compute the best possible
schedule. In all the other cases, the implicit assumption is that the
algorithm knows the entire network topology regardless of whether
a centralized or decentralized approach is employed.

2.2 Privacy in wireless networks
In this section, we survey research efforts related to privacy in
wireless networks. To the best of our knowledge, there are no
works that focus on privacy in wireless link scheduling. As such,
our overview will focus on general techniques used for privacy
preservation in different domains of wireless networks.

Many research efforts have been devoted to preserving privacy
from malicious attackers in wireless networks by designing new
attack and defense mechanisms [30, 31]. Wang et al. proposed a
probabilistic source location privacy protection scheme forWireless
Sensor Networks (WSNs). This work changes the packets’ trans-
mission directions by creating phantom nodes, fake sources, and
weights to reduce an adversary’s monitoring probability [29]. In
another work, Koh et al. developed an optimal privacy-enhancing
routing algorithm to prevent the inference of transmission routes.
They considered global adversaries with lossless and lossy observa-
tions, and their techniques use the Bayesian maximum-a-posteriori
estimation strategy to reduce the adversary’s detection probability
for WSNs [17]. Chakraborty et al. proposed a method for temporal
differential privacy in WSNs focused on preventing an adversary
from achieving extra information about the time of an event of a
particular node. They do so by delaying traffic trace at the nodes [2]
using differential privacy mechanisms.

Some research efforts have also adopted Machine Learning for
privacy in wireless networks. For instance, Mohamed et al. pro-
posed a privacy model for using federated learning over a wireless
channel by using user sampling and a wireless gradient aggrega-
tion scheme [22]. Liu et al. proposed a gated recurrent unit neural

network algorithm for accurate traffic flow prediction while pre-
serving privacy. They combined a federated averaging algorithm
with a joint-announcement protocol in the aggregation mechanism
to improve privacy, keeping accuracy at a good level and decreasing
the communication overhead [20]. Kim et al. presented over-the-air
and broadcast adversarial attacks against deep learning to fool a
modulation classifier. They also designed a certified defense method
to reduce the impact of adversarial attacks on the modulation clas-
sifier performance [15]. Tang et al. proposed a privacy-preserving
federated learning system by protecting local gradients and global
models via efficient verification of local gradients. Their system
also defended against passive and active inference attacks without
incurring accuracy losses [26].

Our work differs significantly from the above in terms of motiva-
tion and methodology. First, our work focuses on link scheduling.
In contrast, the above works focus on other wireless domains, such
as protecting paths from a source to a destination, protecting the
occurrence of events, protecting federated learning gradients and
models, etc. Second, our notion of privacy is focused on reveal-
ing only relevant information required to compute a schedule. In
contrast, the above works provide privacy by adding information
(e.g., phantom nodes, temporal noise) to reduce the likelihood of an
attack by an adversary. In their case, the information is transmitted
in the system and is protected by specialized techniques. In our
case, we note that the possibility of a privacy attack is minimized
because the system does not transmit the information and is not
revealed to an adversary in any form.

3 BACKGROUND
In this section, we briefly introduce some background about the
existing state of link scheduling algorithms. In particular, we show-
case a typical scenario where link scheduling is employed, describe
the concept of a conflict graph used by many greedy link scheduling
algorithms, and describe the construction of a benchmark algorithm
called Local Greedy Scheduling (LGS) [14] as a representative of
greedy algorithms in the literature. Our description will focus on an
overview of the LGS algorithm to showcase the privacy concerns
and develop an intuition about our privacy-preserving algorithm.
We will then use the information from this section to describe our
algorithms in detail in Section 4.

3.1 Link scheduling for wireless networks
The goal of wireless link scheduling algorithms is to, given a wire-
less network, maximize the count and weights of links that can be
activated to transmit packets on a channel at any given moment.
The schedule must be defined to minimize the possibility of inter-
ference in the channel to avoid the scenario of devices needing to
retransmit packets. We note that link scheduling algorithms are
ideal when (1) other collision sensing protocols, such as CSMA/CA,
are unavailable, and (2) the wireless devices can transmit their
weights to a server/other nodes to compute the schedule.

The most optimal wireless link schedule that can be computed in
a wireless network would be a solution to the maximum weighted
independent set (MWIS) problem. MWIS focuses on finding an
independent set of the largest weights among all possible indepen-
dent solutions. Intuitively, such a solution is resource intensive

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 1: An example multihop wireless network.

and considered to be NP-Hard. As a result, prior research efforts
have focused on greedy algorithms (e.g., Greedy Maximal Schedul-
ing, Local Greedy Scheduling, and Greedy Coloring) that compute
schedules that approximate MWIS solutions with execution times
nearing real-time performance.

While link scheduling algorithms can conceptually be applied
to various different topologies of wireless networks, it is more
well-suited to multihop wireless networks. For instance, a typical
small home Wi-Fi network is not well suited for link scheduling
since the algorithms can select only one link at a time to avoid
interference in the network. This defeats the purpose of using
link scheduling algorithms. As a result, our work will focus on
large multihop wireless networks that adopt orthogonal frequency-
division multiplexing (OFDM) where the channel is divided into
a set of orthogonal sub-channels and time slots. In this scenario,
multiple device transmissions at the same time slot may cause
interference in the wireless network that our privacy-preserving
link scheduling algorithm is designed to mitigate.

3.2 Conflict graphs
A conflict graph is a graph construction technique used in wireless
networks to define interference between network links. Using a
conflict graph simplifies link scheduling computation because once
a link has been selected for the schedule, all its neighboring links
can be ignored. This is because choosing any neighbor will cause
interference in the network.

To illustrate the construction of a conflict graph, we will consider
a simple multihop wireless network shown in Figure 1. We denote
this example wireless network as a graph 𝐺 = (𝑉 , 𝐸). The vertices
𝑉 = {𝐷1, 𝐷2, . . . , 𝐷7} denote the set of all devices in the network.
The edges𝐸 = {𝐿(𝐷1, 𝐷2,𝑊1,2), 𝐿(𝐷1, 𝐷7,𝑊1,7), . . . , 𝐿(𝐷6, 𝐷7,𝑊6,7)}
denote links between the devices, where 𝐷𝑖 ∈ 𝑉 and𝑊𝑗,𝑘 denotes
the weight of the link between devices 𝐷 𝑗 and 𝐷𝑘 . In the case of
our example network, some example weights are𝑊1,2 = 8,𝑊1,7 = 4,
and𝑊6,7 = 7. We note that the choice of weight is determined based
on the scheduling requirements of the network.

A conflict graph 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶) can be easily derived from the
network graph𝐺 . Here, the vertices 𝑉𝐶 are simply the edges 𝐸 of
the network graph. If we represent𝑉𝐶 as {𝑉 1,2

𝐶
,𝑉

1,7
𝐶
, . . . ,𝑉

6,7
𝐶
}, then

some example vertices for our example wireless network are𝑉 1,2
𝐶

=

𝐿(𝐷1, 𝐷2,𝑊1,2), 𝑉 1,7
𝐶

= 𝐿(𝐷1, 𝐷7,𝑊1,7), and 𝑉 6,7
𝐶

= 𝐿(𝐷6, 𝐷7,𝑊6,7).
The edges 𝐸𝐶 now denote interference between the vertices. In our

Figure 2: Conflict graph constructed for the example wireless
network shown in Figure 1.

example network, some example edges associated with vertex 𝑉 1,2
𝐶

are 𝐼 (𝑉 1,2
𝐶
,𝑉

1,7
𝐶
), 𝐼 (𝑉 1,2

𝐶
,𝑉

2,3
𝐶
), and 𝐼 (𝑉 1,2

𝐶
,𝑉

2,4
𝐶
), where 𝐼 denotes

interference between two vertices. Visually, Figure 2 shows the
conflict graph constructed for the wireless network in Figure 1.
In simple words, if a link between devices 𝐷1 and 𝐷2 is activated,
then the links between devices 𝐷1 and 𝐷7, devices 𝐷2 and 𝐷3, and
devices 𝐷2 and 𝐷4 should not be activated. Activating either of
those links will cause interference in the network, violating link
scheduling constraints.

3.3 Privacy concerns with existing algorithms
This section will provide an overview of the Local Greedy Sched-
uling (LGS) algorithm to (1) represent how traditional greedy link
scheduling algorithms function and (2) develop an intuition of the
privacy concerns associated with traditional algorithms. Our choice
of the LGS algorithm is driven by the fact that the distributed algo-
rithm has been shown to output schedules that approach MWIS by
prior research efforts [34].
Local Greedy Algorithm Overview: The LGS algorithm uses the
conflict graph𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶). Let 𝑣 denote the set of all devices that
have been visited. The first step in the algorithm is to identify a set
of devices 𝑟 that are remaining (not visited). We note that 𝑟 = 𝑉𝐶
in the first iteration of the algorithm. The set 𝑟 is sorted by weights
in the next step, and the maximum weighted vertex is chosen as
part of the schedule. In our example network, the algorithm would
choose 𝑉 2,4

𝐶
= 𝐿(𝐷2, 𝐷4,𝑊2,4) since its weight𝑊2,4 is the highest

weight at 10. The algorithm would then mark the vertex and its
neighbors as visited in set 𝑣 . In our example network, the set 𝑣
would contain {𝑉 2,4

𝐶
,𝑉

1,2
𝐶
,𝑉

2,3
𝐶
,𝑉

3,4
𝐶
,𝑉

4,5
𝐶
} after the first iteration.

After each iteration, the set 𝑟 is updated with the remaining devices
(𝑟 = 𝑟 − 𝑣), sorted by weight, and the maximum weighted vertex is
selected for the schedule. This process continues till no devices are
remaining. In our example network, the algorithm would choose
vertex𝑉 5,6

𝐶
for the schedule in the second iteration since the vertex

has the highest weight at 9 among the remaining devices. The
algorithm will also set 𝑣 as {𝑉 2,4

𝐶
,𝑉

1,2
𝐶
,𝑉

2,3
𝐶
,𝑉

3,4
𝐶
,𝑉

4,5
𝐶
,𝑉

5,6
𝐶
,𝑉

6,7
𝐶
}

and 𝑟 as {𝑉 1,7
𝐶
} after the second iteration. Since only the vertex

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Privacy-Preserving Greedy Link Scheduling for Wireless Networks Proceedings on Privacy Enhancing Technologies YYYY(X

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

)

𝑉
1,7
𝐶

remains in 𝑟 after the second iteration, it is selected by the
algorithm in the third iteration completing the final schedule. As
a result, the final schedule is computed as [𝑉 2,4

𝐶
,𝑉

5,6
𝐶
,𝑉

1,7
𝐶
] (i.e.,

[𝐿(𝐷2, 𝐷4, 10), 𝐿(𝐷5, 𝐷6, 9), 𝐿(𝐷1, 𝐷7, 4)]) with a total weight of 23.
In Section 4, we will demonstrate that the same results can be
obtained in a privacy-preserving manner using our design and
implementation of the PriLink algorithm.
Privacy Concerns: The current link scheduling algorithms have not
been designed with privacy in mind. Using the LGS algorithm as an
example, we can observe that the algorithm requires the traversal
of all the graph vertices to compute the link schedule. In fact, all
other greedy algorithms we analyzed during our research required
knowledge of the entire graph to calculate the schedule (e.g., Greedy
Maximal, Distributed Greedy, Color Greedy). This is undesirable
from a privacy perspective since knowledge of the entire wireless
network can be abused by any adversary.

In a centralized system, the threat is an honest-but-curious cen-
tral server. This adversary computes the correct schedule but is
interested in learning about the wireless network topology, the
devices in the network, and their transmission characteristics. In
centralized link scheduling, we note that this adversary may not
even be part of the wireless network and can be at a remote location.
A suitable example would be the deployment of link scheduling in
an adversarial scenario, such as a battlefield. In such a scenario, if a
central server (e.g., a 5G gNodeB base station) is used and cannot be
trusted, then the leakage of the wireless topology and the devices’
transmissions can potentially result in the loss of life and the battle.
We believe privacy is vital in such scenarios and warrant using
privacy-preserving algorithms like PriLink.

In a distributed system, the threat is any device participating in
the wireless network. Since each device in the network knows the
wireless topology, an adversarial device can abuse the information.
A simple example could be a device aiming to disrupt network
communications. Such an adversary can position themselves where
they can cause significant interference within the network. After
this, if the adversary’s device is selected for transmission, they
may decide to transmit or not transmit. In any case, they manage
to degrade the throughput and efficiency of the wireless network
with their attack. Another advantage for the adversary is low de-
tection of the attack since they follow the protocols defined by the
wireless network instead of sending unexpected packets. A privacy-
preserving algorithm like PriLink will reduce the likelihood of an
attack (although it is still possible) since the adversary will not be
aware of the network’s topology and cannot position themselves
for maximum network degradation.

4 PRILINK: PRIVACY-PRESERVING GREEDY
LINK SCHEDULING ALGORITHM DESIGN

This section describes the system model and design of the PriLink
privacy-preserving link scheduling algorithm. Section 4.1 discusses
the system model and our assumptions about the wireless network.
Section 4.2 describes the capabilities of adversaries that our algo-
rithm is designed to protect. In Section 4.3, we describe a base
PriLink algorithm in detail. The goal of the section is to introduce
a simplified version of the algorithm that provides upperbound

privacy and lowerbound link scheduling performance of our algo-
rithm. Section 4.4 describes a tolerance-based PriLink algorithm
that accepts a tolerance value to incorporate a privacy-scheduling
tradeoff in the algorithm.

4.1 System Model and Assumptions
The PriLink algorithm can replace existing greedy link scheduling
algorithms as a drop-in replacement. It can be used with multi-
hop wireless networks where the privacy of the wireless network
topology and the devices’ transmission characteristics is vital (see
Section 3.3 for examples). We assume dynamic multihop wireless
networks where the topology changes over time, requiring real-
time link schedule computation. Even though we assume dynamic
networks, we note that our algorithm can yield similar performance
in static networks. The choice of dynamic networks showcases mod-
ern and dynamic infrastructures that evolve continually. We do note
that our algorithm’s privacy guarantees are somewhat weakened
in static networks since an adversary continually monitoring the
schedules can infer the topology over time. This is not the case in
dynamic networks, where an adversary cannot infer the topology
at any instant when our PriLink algorithm is utilized. The link
schedule can be computed by a central server in a centralized setup.
The schedule can also be distributed, where devices can broadcast
their links, and each computes its schedule. We note that a central-
ized setup is better as it requires less network traffic; i.e., devices
need only transmit their weights to a single server rather than
other network devices, and it can also better protect the privacy of
the devices from other devices in the network. As such, all further
discussions will focus on centralized link scheduling with a central
server computing the schedules.

4.2 Adversary Model
We assume an adversary that is honest-but-curious. Since we as-
sume a centralized system, the adversary is a central server that
receives the input link weight information from the network de-
vices and outputs an efficient link schedule corresponding to the
received inputs. As the adversary is honest, we assume that the
schedule will be calculated correctly. As a result, our algorithm does
not focus on protecting the link information that is transmitted to
the server. As the adversary is also curious, the algorithm limits
the link weight information received by the server to only those
required to compute the schedule. This way, the algorithm prevents
the adversary from inferring the wireless network topology and
the devices’ transmission characteristics.

4.3 PriLink Base Algorithm
Our intuition for PriLink was derived from the observation that
existing greedy link scheduling algorithms focus on finding the
highest-weighed link in every neighborhood, ignoring all the other
links. This makes intuitive sense since the goal is to find a set of
links within the wireless network that maximizes the schedule’s
total weight among all possible link schedules. This observation
drove us to experiment with an algorithm where the devices only
share their highest weighted link and hide all the other links from a
central server. We hypothesized that the server would still be able
to compute the schedule. However, this schedule may not approach

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 3: Breaking down the wireless network graph in Fig-
ure 1 into small per-device graphs. Each device in the network
maintains its link weight information.

Algorithm 1 PriLink Base Algorithm

1: Input: 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 ← {𝐷1, 𝐷2, . . . , 𝐷𝑁 }
2: Output: 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← []
3: 𝑙𝑖𝑛𝑘𝑠 ← ∅
4: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← ∅
5: for all 𝐷𝑖 ∈ 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 do
6: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑚𝑠𝑔(𝑚 = 𝐷𝑖 , 𝐷 𝑗 ,𝑊𝑖, 𝑗) ⊲ 𝐷 𝑗 =𝑚𝑎𝑥 𝐸 (𝐷𝑖)
7: 𝑙𝑖𝑛𝑘𝑠 ← 𝑙𝑖𝑛𝑘𝑠 ∪ {𝑚}
8: end for

9: 𝑠𝑜𝑟𝑡𝑒𝑑_𝑙𝑖𝑛𝑘𝑠 ← 𝑠𝑜𝑟𝑡 (𝑙𝑖𝑛𝑘𝑠)
10: for all (𝐷𝑖 , 𝐷 𝑗 ,𝑊𝑖, 𝑗) ∈ 𝑠𝑜𝑟𝑡𝑒𝑑_𝑙𝑖𝑛𝑘𝑠 do
11: if !(𝐷𝑖 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 | |𝐷 𝑗 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑) then
12: 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 + [(𝐷𝑖 , 𝐷 𝑗 ,𝑊𝑖, 𝑗)]
13: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝐷𝑖 , 𝐷 𝑗 }
14: end if
15: end for

the performance of traditional greedy algorithms such as the Lo-
cal Greedy Scheduling (LGS) algorithm. The resulting algorithm
from our experiment is shown in Algorithm 1. We note that this
algorithm serves as a baseline for PriLink. The reason is that since
every device is sharing just one link, we achieve an upperbound on
privacy benefits and a lowerbound on link scheduling performance.
Revealing at least one link per device is an unavoidable privacy
leakage since a central server cannot perform any computations
without this information. The maximum weighted device is also
necessary to determine which link is selected so the server does
not select another link with the same device. In Section 4.4, we will
describe an extended algorithm that uses a privacy tolerance value
to improve the scheduling performance that approaches existing
greedy algorithms’ performance with a slight compromise in pri-
vacy. The evaluation results for both algorithms (base and privacy
tolerance) are reported in Section 5.

The PriLink base algorithm (Algorithm 1) is described below.

Setup: We will describe the setup required for our algorithm us-
ing the example wireless network from Figure 1. Given that our
algorithm’s primary goal is privacy, we note that the entire graph
is never shared with the server. Instead, in our setup, each device
maintains its own network state. This decentralization ensures
that the devices can restrict access to most of their transmission
characteristics and reveal only what the server requires to com-
pute the link schedule. A complete decentralization of the net-
work topology from Figure 1 is shown in Figure 3. We can observe
that in the figure, device 𝐷1 maintains a graph 𝐺𝐷1 = (𝑉𝐷1 , 𝐸𝐷1).
The vertices comprise the device and its neighbors, i.e., 𝑉𝐷1 =

{𝐷1, 𝐷2, 𝐷7}. The edges only connect the device with its neigh-
bors, 𝐸𝐷1 = {𝐿(𝐷1, 𝐷2,𝑊1,2), 𝐿(𝐷1, 𝐷7,𝑊1,7)}. Similarly, a device
𝐷3 maintain the graph𝐺𝐷3 = (𝑉𝐷3 , 𝐸𝐷3) comprising vertices𝑉𝐷3 =

{𝐷2, 𝐷3, 𝐷4} and edges 𝐸𝐷3 = {𝐿(𝐷2, 𝐷3,𝑊2,3), 𝐿(𝐷3, 𝐷4,𝑊3,4)}.
Similarly, all other devices 𝐷2, 𝐷4, 𝐷5, 𝐷6, and 𝐷7 maintain their
own graphs to control their privacy.
Step 1: The first step of the algorithm corresponds to lines 5-8 in
Algorithm 1. In this step, each device from the network shares the
following link weight information with the server - (𝐷𝑖 , 𝐷 𝑗 ,𝑊𝑖, 𝑗)
(lines 5 and 6). Here, 𝐷𝑖 is the source device. 𝐷 𝑗 is a neighbor of
𝐷𝑖 such that weight𝑊𝑖, 𝑗 is the maximum weight in the graph 𝐺𝐷𝑖

.
To illustrate with an example, consider the graphs for devices 𝐷1
and 𝐷3 in Figure 3. The device 𝐷1 will share the link (𝐷1, 𝐷2, 8)
with the server since the maximum weight in the graph 𝐺𝐷1 is 8
with device 𝐷2. Similarly, 𝐷3 will share the link (𝐷2, 𝐷3, 3) since
the maximum weight in the graph 𝐺𝐷3 is 3 with 𝐷2. The server
will add these links to a set called 𝑙𝑖𝑛𝑘𝑠 (line 7) which will be used
in the next steps to compute the final schedule.
Step 2: This step of the algorithm corresponds to line 9 in Algo-
rithm 1. In this step, the algorithm sorts all the links available in
the set 𝑙𝑖𝑛𝑘𝑠 and stores them in a new list called 𝑠𝑜𝑟𝑡𝑒𝑑_𝑙𝑖𝑛𝑘𝑠 . Note
that the sorting step arranges all the links such that the highest-
weighted links are at the top and the lowest-weighted ones at the
bottom. For the setup in Figure 3, the result after the sorting step
is shown in Figure 4. This step is beneficial since it enables the
algorithm to select the highest-weighted links first by traversing
the sorted list of links.
Step 3: This algorithm step corresponds to lines 10-15 in Algorithm
1. In this step, the algorithm iterates over all the sorted links (line
10), ignores links that can cause interference in the network given
the current schedule (line 11), adds non-interfering links to the
schedule (line 12), and then adds the non-interfering links to the
set of visited devices (line 13). We will illustrate these steps using
the sorted list of links from Figure 4. The algorithm will have seven
iterations since seven network devices share one link each.
Iteration 1: The algorithm returns true for line 11 during this iter-
ation since no visited devices exist. It adds the link (𝐷2, 𝐷4, 10)
to the list containing the schedule in line 12, i.e., 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ←
[𝐿(𝐷2, 𝐷4, 10)]. It updates the visited set with 𝐷2 and 𝐷4 in line
13, i.e., 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← {𝐷2, 𝐷4}. The outputs of the first iteration are
shown in Figure 5.
Iteration 2: The algorithm returns false for line 11 since both 𝐷4
and 𝐷2 are visited. All other operations are skipped.
Iteration 3: The algorithm returns true for line 11 during this itera-
tion since both𝐷5 and𝐷6 are not visited. It adds the link (𝐷5, 𝐷6, 9)

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Privacy-Preserving Greedy Link Scheduling for Wireless Networks Proceedings on Privacy Enhancing Technologies YYYY(X

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

)

Figure 4: PriLink Algorithm Step 2 - Sorting of network de-
vices by weight.

Figure 5: PriLink Algorithm Step 3 - Schedule after the first
iteration.

Figure 6: Final link schedule calculated by the PriLink Base
Algorithm.

to the list containing the schedule in line 12, i.e., 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ←
[𝐿(𝐷2, 𝐷4, 10), 𝐿(𝐷5, 𝐷6, 9)]. It updates the visited set with 𝐷5 and
𝐷6 in line 13, i.e., 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← {𝐷2, 𝐷4, 𝐷5, 𝐷6}.
Iterations 4 - 7: The algorithm returns false for line 11 for all these
iterations, and all other operations are skipped. In iteration 4, both
𝐷6 and 𝐷5 are visited. In iteration 5, device 𝐷2 is visited. In it-
eration 6, device 𝐷6 is visited. In iteration 7, device 𝐷2 is vis-
ited. The link schedule is finalized at this point as 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ←
[𝐿(𝐷2, 𝐷4, 10), 𝐿(𝐷5, 𝐷6, 9)]. The outputs of the final iteration are
shown in Figure 6.

Algorithm 2 PriLink Privacy Tolerance Algorithm

1: Inputs: 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 ← {𝐷1, 𝐷2, . . . , 𝐷𝑁 }, 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 (𝜏) ∈ R
2: Output: 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← []
3: 𝑟𝑒𝑚𝑎𝑖𝑛 ← 𝑐𝑜𝑝𝑦 (𝑑𝑒𝑣𝑖𝑐𝑒𝑠)
4: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← ∅
5: for all 𝑡 ← 0 to 𝜏 do
6: 𝑙𝑖𝑛𝑘𝑠 ← ∅
7: for all 𝐷𝑖 ∈ 𝑟𝑒𝑚𝑎𝑖𝑛 do
8: 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑚𝑠𝑔(𝑚 = 𝐷𝑖 , 𝐷 𝑗 ,𝑊𝑖, 𝑗) ⊲ 𝐷 𝑗 = 𝑠𝑜𝑟𝑡 (𝐸 (𝐷𝑖)) [𝑡]
9: 𝑙𝑖𝑛𝑘𝑠 ← 𝑙𝑖𝑛𝑘𝑠 ∪ {𝑚}
10: end for

11: 𝑠𝑜𝑟𝑡𝑒𝑑_𝑙𝑖𝑛𝑘𝑠 ← 𝑠𝑜𝑟𝑡 (𝑙𝑖𝑛𝑘𝑠)
12: for all (𝐷𝑖 , 𝐷 𝑗 ,𝑊𝑖, 𝑗) ∈ 𝑠𝑜𝑟𝑡𝑒𝑑_𝑙𝑖𝑛𝑘𝑠 do
13: if !(𝐷𝑖 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 | |𝐷 𝑗 ∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑) then
14: 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 + [(𝐷𝑖 , 𝐷 𝑗 ,𝑊𝑖, 𝑗)]
15: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝐷𝑖 , 𝐷 𝑗 }
16: end if
17: end for

18: 𝑟𝑒𝑚𝑎𝑖𝑛 ← 𝑟𝑒𝑚𝑎𝑖𝑛 − 𝑣𝑖𝑠𝑖𝑡𝑒𝑑
19: end for

Recall that we had previously described this PriLink algorithm
as a baseline that provides an upperbound on privacy benefits and
a lowerbound on link scheduling performance. In our example
wireless topology from Figure 1, we observe that the server sees 5
unique links because links 𝐿(𝐷2, 𝐷4, 10) and 𝐿(𝐷4, 𝐷2, 10) are the
same, and so are links 𝐿(𝐷5, 𝐷6, 9) and 𝐿(𝐷6, 𝐷5, 9). Even in a small
graph with 8 links, about 3 links are not disclosed to an adversary.
Section 5 shows that a large network can hide more than 95% of its
links using the PriLink algorithm.

The PriLink base algorithm also provides a lowerbound of link
scheduling performance. Comparing the algorithm’s schedule (i.e.,
[𝐿(𝐷2, 𝐷4, 10), 𝐿(𝐷5, 𝐷6, 9)]) for the example network from Figure 1
with LGS schedule (i.e., [𝐿(𝐷2, 𝐷4, 10), 𝐿(𝐷5, 𝐷6, 9), 𝐿(𝐷1, 𝐷7, 4)]),
we observe that the base algorithm computes a suboptimal sched-
ule missing the link 𝐿(𝐷1, 𝐷7, 4). The problem occurs because the
algorithm does not select the highest weighted links for 𝐷1 (i.e.,
(𝐷1, 𝐷2, 8)) and𝐷7 (i.e., (𝐷7, 𝐷6, 7)) as𝐷2 and𝐷6 are already visited.
The missing link (𝐷1, 𝐷7, 4) is never transmitted. If 𝐷1 and 𝐷7 are
able to retransmit their second-highest-weighted links (𝐷1, 𝐷7, 4)
and (𝐷7, 𝐷1, 4), the algorithmwill now be able to select this missing
link in the next iteration. This limitation of the PriLink base algo-
rithm is solved using the privacy tolerance algorithm (described
next) that enables devices not yet part of the schedule to retransmit
another link which may get selected by the algorithm.

4.4 PriLink Privacy Tolerance Algorithm
The PriLink privacy tolerance algorithm is shown in Algorithm 2.
A large section of the algorithm (lines 6 - 17) is similar to Algo-
rithm 1. Here, we will only focus on the differences between the
two algorithms. The privacy tolerance algorithm now accepts a tol-
erance value 𝜏 ∈ R as an input parameter (line 1). This 𝜏 parameter
specifies the maximum count of links that devices can expose to

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 7: Final link schedule calculated by the PriLink Pri-
vacy Tolerance Algorithm.

the algorithm and can be adjusted based on the privacy require-
ments of the wireless network. Line 3 of the algorithm initializes
a new set called 𝑟𝑒𝑚𝑎𝑖𝑛 that tracks the devices not scheduled in a
previous iteration. In the first iteration, 𝑟𝑒𝑚𝑎𝑖𝑛 is set to all devices
in the network to ensure that all are traversed at least once. Line
5 of the algorithm creates a new loop 𝑡 from index 0 to 𝜏 − 1. The
loop ensures the algorithm does not request more links than the
specified privacy tolerance value. At the end of each iteration of the
loop in line 18, the set 𝑟𝑒𝑚𝑎𝑖𝑛 is updated only to use unscheduled
devices for the next iteration of line 5. Another difference between
Algorithms 1 and 2 is line 8, where the devices now send their
link information based on the index value 𝑡 . For example, if 𝑡 = 0,
the devices will send their highest-weighted link information. At
𝑡 = 1, the devices will now send their second-highest-weighted link
information if one is available, and so on. We note that some edge
cases are not shown in Algorithm 2 for brevity. One example is that
the algorithm terminates early (i.e., 𝑡 < 𝜏 − 1) if 𝑟𝑒𝑚𝑎𝑖𝑛 contains
only one or no devices so that devices do not send more links than
what is required to compute the schedule.

We will now apply the PriLink privacy tolerance algorithm on
the example wireless network from Figure 1. The first loop of the al-
gorithm, 𝑡 = 0, functions the same as Algorithm 1 and produces the
output shown in Figure 6. At this point, observe that 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ←
[𝐿(𝐷2, 𝐷4, 10), 𝐿(𝐷5, 𝐷6, 9)] and 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← {𝐷2, 𝐷4, 𝐷5, 𝐷6}. The
set 𝑟𝑒𝑚𝑎𝑖𝑛 at the end of this loop will now contain {𝐷1, 𝐷3, 𝐷7}.
This state is visually shown in the top half of Figure 7. The next
loop 𝑡 = 1 at line 5 will request the second-highest-weighted
link from 𝐷1, 𝐷3, and 𝐷7 at line 8. These links will be (𝐷1, 𝐷7, 4),
(𝐷3, 𝐷4, 2) and (𝐷7, 𝐷1, 4). At the end of this loop, we will have
𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← [𝐿(𝐷2, 𝐷4, 10), 𝐿(𝐷5, 𝐷6, 9), 𝐿(𝐷1, 𝐷7, 4)], 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ←
{𝐷2, 𝐷4, 𝐷5, 𝐷6, 𝐷1, 𝐷7}, and 𝑟𝑒𝑚𝑎𝑖𝑛 ← {𝐷3}. Recall that the algo-
rithm terminates when one or zero devices remain, which is the case
now. Therefore, the final schedule is [𝐿(𝐷2, 𝐷4, 10), 𝐿(𝐷5, 𝐷6, 9), 𝐿(
𝐷1, 𝐷7, 4)] which is the same result obtained using the Local Greedy
Scheduling algorithm. This schedule is visually shown in the bottom
half of Figure 7. This example illustrates how the privacy tolerance

Table 1: Wireless networks simulation parameters.

Methodology Random topologies using ER model
Graph sizes [10, 50, 90, 130, 170, 210, 250]
Probabilities (P) [0.2, 0.8]
Number of runs 250 runs per graph size and probability

Table 2: Benchmark algorithms.

1. Greedy Maximal Scheduling (GMS)
2. Local Greedy Scheduling (LGS)
3. Distributed Greedy Scheduling (DGS)

value can improve the link scheduling performance approaching
the performance of greedy benchmark algorithms.

5 PERFORMANCE EVALUATION
This section describes the wireless network simulation methodol-
ogy and parameters, the performance metrics, and the results of
the evaluation of our PriLink algorithms compared with existing
high-performing benchmark greedy algorithms.

5.1 Wireless Network Simulation Methodology
Multiple wireless networks were generated using simulations, en-
abling us to test the performance of our algorithms using random
but realistic topologies. These random wireless networks were gen-
erated using the Erdős–Rényi (ER) [6] model. In the ER model,
given a count of nodes 𝑛 and a probability 𝑝 , a network graph is
constructed by connecting 𝑛 nodes randomly with probability 𝑝
independent of other edges. Other works have also previously used
the ER model for assessing link scheduling performance [33, 34].
Simulation parameters: Table 1 shows the parameters used for
the simulation. In this work, we have evaluated our algorithms
using multiple graph sizes ranging from small graphs of 10 devices
to large graphs of 250 devices. Many other graph sizes between 10
and 250 are also considered to assess the effect of different graph
sizes, as shown in the table. The ER model probabilities are chosen
as 0.2 and 0.8. Here, a probability of 0.2 will enable us to assess
the performance of our algorithms on sparse graphs. On the other
hand, a probability of 0.8 will help us evaluate the performance
on dense graphs. For each graph size and probability pair (e.g.,
(10, 0.2), (130, 0.8), (210, 0.2)), we generate 250 graphs and run our
algorithms and benchmarks for each graph.
Benchmark algorithms: Table 2 shows the greedy benchmark
algorithms used for the evaluation. These algorithms were chosen
because they demonstrated high-scheduling performance and low
execution times. We do not evaluate specific greedy algorithms
if their (1) link scheduling performance is lower than selected al-
gorithms and (2) the execution time is relatively high. One such
algorithm is Color Greedy Scheduling [14] which underperforms
compared to Local Greedy Scheduling (LGS) and has a worst-case
complexity of𝑂 (𝐾 ∗𝐸), where𝐾 is the count of broadcast messages
and 𝐸 are the graph edges. Similarly, ML-based works were not

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Privacy-Preserving Greedy Link Scheduling for Wireless Networks Proceedings on Privacy Enhancing Technologies YYYY(X

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

)

chosen as they require high training time and are not well-suited
for real-time execution on dynamic wireless networks.

(1) MaximumWeighted Independent Set (MWIS) [18, 28]: This
is the upperbound of link scheduling performance. MWIS is
not implemented as the problem is NP-Hard and infeasible
to evaluate for experiments with many runs.

(2) Greedy Maximal Scheduling (GMS) [12, 19]: GMS is a cen-
tralized greedy algorithmwith link scheduling performance
that approximates MWIS. The algorithm is centralized as it
requires global knowledge of link weights.

(3) Local Greedy Scheduling (LGS): LGS is a distributed greedy
algorithm with link scheduling performance very similar
to GMS. The algorithm uses only local neighborhood infor-
mation and can be computed simultaneously by multiple
devices on a network.

(4) Distributed Greedy Scheduling (DGS): DGS is another dis-
tributed greedy algorithm with good link scheduling per-
formance. It is not as accurate as LGS but provides faster
computation as the algorithm can be parallelized.

5.2 Performance Metrics
The following metrics were used to measure the performance of
the PriLink algorithms compared with high-performance greedy
benchmark algorithms.

• Link Scheduling Performance: We measure the link
scheduling performance as the total weight of the links that
are selected by an algorithm for the schedule, in comparison
to the total weight of the schedule of the best performing
greedy benchmark algorithm - the Local Greedy Schedul-
ing (LGS). The performance is measured as a percentage
value for ease of display. If𝑊𝑎 is the total weight of the
schedule computed by an algorithm under test and𝑊 is
the total weight computed by LGS, then the performance
is measured as 𝑊𝑎

𝑊
∗ 100.

• Execution time:Wemeasure the execution time of PriLink
as the time taken by the algorithms (compared with Local
Greedy) to compute the final schedule given the list of
devices and a privacy tolerance value as inputs. In other
benchmark algorithms, the execution time ismeasured from
when the algorithm receives a graph as input and starts
computing the schedule.

• Privacy Cost: We define privacy cost as the count of
unique links disclosed by wireless devices compared to
the total links in the wireless network. If 𝑁 denotes the
total links in a network and 𝑁𝑑 denotes the count of links
disclosed to the algorithm, then the privacy cost is measured
as 𝑁𝑑

𝑁
∗100. We note that, except for PriLink, all benchmark

algorithms in our set have a privacy cost value of 100% for
every run as the entire network topology and link weights
information is shared with the algorithm.

5.3 Evaluation Results
This section will report the results obtained for the evaluation
of the simulations using the methodology from Section 5.1 and
the metrics from Section 5.2. The scheduling performance results
are reported in Section 5.3.1. The execution times are reported

Figure 8: Link scheduling performance of PriLink compared
with benchmark algorithms for sparse networks (𝑃 = 0.2).

Figure 9: Link scheduling performance of PriLink compared
with benchmark algorithms for dense networks (𝑃 = 0.8).

in Section 5.3.2. The privacy costs results are then reported in
Section 5.3.3. Finally, the impact of privacy tolerance values on the
scheduling performance is reported in Section 5.3.4.

5.3.1 Link Scheduling Performance Evaluation Results. This eval-
uation focuses on measuring the link scheduling performance of
PriLink as compared to existing greedy algorithms specified in Sec-
tion 5.1. Measuring this metric is essential since prior research in
link scheduling has primarily focused on improving this metric.
Intuitively, a privacy-preserving algorithm is most beneficial if it
provides good link scheduling performance comparable to prior
algorithms from the literature.

Figure 8 shows the performance of the PriLink base and PriLink
privacy tolerance algorithms for sparse networks (𝑃 = 0.2), as com-
pared to Local Greedy Scheduling (LGS), Greedy Maximal Schedul-
ing (GMS), and Distributed Greedy Scheduling (DGS). The graph

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

sizes range from 10 to 250 in increments of 40, and the number of
runs per graph size is set to 250 (see Table 1 for parameters). For
the PriLink tolerance algorithm, we chose a privacy tolerance value
of 10 as our privacy costs evaluation (see Section 5.3.3) showed
that the privacy leakage is only slightly higher than the PriLink
base algorithm with less than a 1% difference in disclosed links
for a graph size of 250 devices. The figure shows that LGS (blue)
and GMS (orange) are very similar in link scheduling performance,
with less than 0.1% difference between the two algorithms. We use
LGS as the reference point as manual analysis indicated that it
produces schedules that are just slightly higher than GMS for our
simulations. The figure shows that the PriLink base algorithm is
ineffective at obtaining link schedules close to the benchmarks for
large graphs. The average link scheduling performance is about
98% of LGS for a graph size of 10 but degrades significantly with a
larger graph size of 50 with a performance of about 86% of LGS. The
performance further degrades with a graph size of 250, about 76%
of the LGS performance. On the other hand, the PriLink tolerance
algorithm with a tolerance value of 10 shows performance that
approaches LGS. The tolerance algorithm’s performance is about
99% of LGS for a graph size of 50 and about 97% for a larger graph
size of 250. In all cases, it outperforms the DGS algorithm indicating
that our algorithm outputs schedules that are more efficient than
some well-cited greedy algorithms.

Figure 9 shows the performance of the PriLink base and PriLink
privacy tolerance algorithms compared with LGS, GMS, and DGS
for dense networks (𝑃 = 0.8). The link scheduling performance
of the PriLink privacy tolerance algorithm for dense networks
shows a slight degradation in performance respective to sparse
networks. For instance, for a graph size of 50, the average scheduling
performance degrades from 99% of LGS in sparse networks to about
97% of LGS in dense networks. The effect is more pronounced in a
graph size of 250, where the average link scheduling performance
reduces from 97% of LGS in sparse graphs to about 94.5% of LGS
in dense graphs. Despite this, the performance is close to DGS. It
indicates that the algorithm is still quite efficient and can be used
for real-world link scheduling scenarios where the privacy of the
network topology and link weights is important.

5.3.2 Execution Times Evaluation Results. This evaluation mea-
sures the execution time of PriLink as compared with the Lo-
cal Greedy Scheduling (LGS), Greedy Maximal Scheduling (GMS),
and Distributed Greedy Scheduling (DGS) algorithms. The goal
is to evaluate whether PriLink can be used for real-time privacy-
preserving link scheduling in dynamic multihop wireless networks.
If 𝜏 denotes the privacy tolerance value and 𝑛 denotes the total
count of devices in a wireless network, then the worst-case time
complexity of the PriLink privacy tolerance algorithm is𝑂 (𝜏𝑛𝑙𝑜𝑔𝑛)
as shown in Algorithm 2. We note that the execution time is low
since 𝜏 and 𝑛 comprise small numbers that can be computed effi-
ciently on modern systems.

Figures 10 and 11 show the average execution time of the PriLink
algorithms compared with the benchmark algorithms. These execu-
tion times were derived from the same experiment discussed during
the link scheduling performance evaluation. For this execution time
evaluation, we again use the baseline as LGS and compare each
algorithm’s time as a percentage value with respect to the LGS time.

Figure 10: Execution time comparison between PriLink and
benchmark algorithms for sparse networks (𝑃 = 0.2).

Figure 11: Execution time comparison between PriLink and
benchmark algorithms for dense networks (𝑃 = 0.8).

Using the percentage value simplifies comparison since algorithms
like LGS are quadratic, and plotting their link schedules directly will
result in severe deviations between algorithms that differ in time
complexities. We also acknowledge that the implementations of
LGS and DGS are centralized1 even though they can be parallelized.
This helps test their performance in a centralized setting like the
one we defined in Section 4.1.

Analyzing the figures, we observe that the PriLink algorithms
(both base and privacy tolerance) outperform all other benchmark
algorithms. The LGS algorithm is the slowest among all benchmark
algorithms. On the other hand, the centralized GMS algorithm is
quite efficient for link scheduling computations. We also observe
that the PriLink privacy tolerance algorithm is almost similar in
execution time to the PriLink base algorithm. One primary reason

1Source code for LGS, GMS, and DGS were implemented by [33] and available at
https://github.com/zhongyuanzhao/distgcn

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Privacy-Preserving Greedy Link Scheduling for Wireless Networks Proceedings on Privacy Enhancing Technologies YYYY(X

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

)

is that, even with high tolerance values, only a small percentage
of devices transmit their second, third, or higher weighted links.
For example, in a graph size of 250, about 75%-80% of devices send
just one link - their highest weighted link. As such, the number
of devices and links executed by Algorithm 2 in the second or
higher loop is low, adding minimal additional computation. Our
results indicate that the PriLink privacy tolerance algorithm with
a tolerance value 10 can compute link schedules very efficiently,
averaging about 0.2 seconds for a graph size of 250. These tests
were performed on a Dell Latitude desktop with 16 CPUs, 16 GB
RAM, and Intel Core I7 processors. For small graph sizes 10 and
50, the average execution times are almost instantaneous at 0.0005
seconds and 0.0065 seconds, respectively.

5.3.3 Privacy Costs Evaluation Results. This evaluation measures
the impact of the privacy tolerance values on the privacy costs in
the PriLink algorithm, for different graph sizes and densities. As
noted earlier, a lower privacy cost indicates higher privacy benefits
since devices can hide more information from a central server. We
do not evaluate this metric for other greedy benchmark algorithms
because the privacy costs with other algorithms are always 100% as
they need the entire wireless topology and link weights information
to calculate the link schedule.

Figure 12 shows the average privacy costs associated with the
PriLink base and privacy tolerance algorithms, using the probabil-
ity 𝑃 = 0.2 denoting sparse wireless networks. For this evaluation,
we chose five different values for the PriLink privacy tolerance
algorithm (2, 4, 6, 8, and 10) to show the impact on privacy costs
for these values. All other simulation parameters were the same,
as shown in Table 1. In addition, we chose the PriLink base algo-
rithm to show the lowerbound on privacy costs and upperbound
on privacy benefits. Note that the PriLink base algorithm is essen-
tially the same as the PriLink privacy tolerance algorithm with a
tolerance value of 1. Returning to the figure, observe that the lower
percentage of disclosed links means the same as lower privacy costs
since the privacy cost measures the percentage of disclosed links
out of the total links. We can see that the PriLink base results out-
perform all other tolerance results for privacy costs. However, the
privacy tolerance results also exhibit low privacy costs indicating
that the privacy benefits of the algorithm uphold even when large
tolerance values are used. For example, considering the graph size
of 250, the difference in privacy costs between tolerance value 1
(base) and tolerance value 10 is less than 1%, which is minor privacy
leakage considering the scheduling performance gains we observed
in Section 5.3.1. Also, the privacy costs reduce significantly for
large graph sizes compared to small graphs. For example, using
the tolerance value of 10, we can see that the privacy costs for a
small graph of size 10 are almost 56%. However, this cost reduces
significantly to 15% for a graph size of 50 and becomes even lower
than 5% for a larger graph size of 250.

Figure 13 shows the privacy costs for the probability 𝑃 = 0.8
denoting dense wireless networks. All other simulation parameters
are the same, as shown in Table 1. We see that the privacy costs are
even lower for dense networks, signifying the high privacy benefits
of using the PriLink algorithm for dense networks. For example, the
privacy costs for a graph size of 10 in sparse networks was about
56% which was reduced significantly to 20% in dense networks.

Figure 12: Impact of different privacy tolerance values on
privacy protections using the PriLink algorithm for sparse
networks (𝑃 = 0.2).

Figure 13: Impact of different privacy tolerance values on
privacy protections using the PriLink algorithm for dense
networks (𝑃 = 0.8).

The results are even more pronounced for large graph size 250,
where the privacy costs are 5% for sparse networks and reduced to
only about 1% for dense networks. These results validate that the
PriLink algorithm is a viable alternative to the greedy benchmarks
when privacy protection of the wireless network topology and link
weights is an important objective.

5.3.4 Impact of Privacy Tolerance Values. This section aims to ana-
lyze the impact of privacy tolerance values on the link scheduling
performance of PriLink. Recall that in Section 5.3.1, we showed that
the PriLink base algorithm’s scheduling performance is subopti-
mal. We also showed that the PriLink privacy tolerance algorithm
with a tolerance value of 10 reported results that approached the
performance of the Local Greedy Scheduling algorithm.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Proceedings on Privacy Enhancing Technologies YYYY(X) Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Figure 14: Impact of different privacy tolerance values on
link scheduling performance using the PriLink algorithm
for sparse networks (𝑃 = 0.2).

Figure 15: Impact of different privacy tolerance values on
link scheduling performance using the PriLink algorithm
for dense networks (𝑃 = 0.8).

Figures 14 and 15 show the setup and results of our evaluation
of the impact of privacy tolerance on link scheduling performance
for sparse (𝑃 = 0.2) and dense networks (𝑃 = 0.8), respectively.
For this evaluation, we chose the privacy tolerance values of 2, 4,
6, 8, and 10 to demonstrate the impact on the scheduling perfor-
mance from these tolerance values. We also use these values to
identify whether the results converge at a specific privacy toler-
ance. Additionally, we chose the PriLink base algorithm as it serves
as the lowerbound of scheduling performance for PriLink. We ran
the evaluation using the same simulation settings as all previous
experiments, as shown in Table 1. Analyzing Figures 14 and 15,
we see the expected result that the scheduling performance for
both sparse and dense networks improves as the tolerance values
increases. This is because the algorithm gets access to a higher

count of links, enabling it to compute more efficient schedules. We
also see that the improvement is significant for lower tolerance
values (e.g., 1, 2, and 4) and then diminishes for higher values (e.g.,
6, 8, and 10). The reason for this is that the number of unscheduled
devices significantly decreases with each loop, and this causes the
algorithm to identify a lower count of potential links to schedule at
higher tolerance values. Even though the algorithm performance
may improve further if we keep increasing the privacy tolerance
values, we ran all our experiments with a value of 10 as it provided
a good balance of scheduling performance and privacy protection.
We note that identifying an ideal privacy threshold value is outside
the scope of this work since it will depend on the scenario of the
wireless network and its privacy requirements.

6 LIMITATIONS & FUTUREWORK
To our knowledge, the focus on privacy protection in the PriLink
algorithm limits the usage of the algorithm in one scenario where
greedy link scheduling algorithms have recently been utilized. For
example, one recent effort [33] on Graph Neural Networks (GNNs)
for link scheduling utilizes the Local Greedy Scheduling algorithm
to train a model for learning the topological weights of links in
the network. Our PriLink algorithm cannot be substituted in this
scenario for privacy protection because our algorithm does not
use a graph for computing link schedules. This limitation would
also be valid for other ML-based implementations where the ex-
pectation is for graphs to be used for link scheduling. One of our
future objectives is to study whether Deep Learning approaches
can be designed (e.g., using Federated Learning) for link scheduling
extending our privacy-preserving PriLink algorithm, where we can
train effective models to improve the scheduling performance and
do so in a privacy-preserving manner.

7 CONCLUSION
This paper proposes a privacy-preserving link scheduling algorithm
called PriLink for multihop wireless networks. PriLink is designed
with built-in privacy protections as the entire network topology is
not shared with a central server, and devices share only links re-
quired for computing the schedule. To our knowledge, PriLink is the
first known implementation of a privacy-preserving link schedul-
ing algorithm. It can be used instead of existing greedy approaches
where the privacy of the wireless network is important. Through
network simulations and comparisonswith high-performing greedy
algorithms, we show that the algorithm achieves good link sched-
uling performance, has faster execution times than existing greedy
benchmarks, and does this in a privacy-preserving manner. The
PriLink privacy evaluation shows that it can hide nearly 85% of
network links for networks containing 50 devices and more than
95% in large networks comprising 250 devices achieving significant
privacy benefits in wireless link scheduling.

REFERENCES
[1] Khaled Ali Abuhasel and Mohammad Ayoub Khan. 2020. A secure industrial

internet of things (IIoT) framework for resource management in smart manufac-
turing. IEEE Access 8 (2020), 117354–117364.

[2] Bodhi Chakraborty, Shekhar Verma, and Krishna Pratap Singh. 2020. Temporal
differential privacy in wireless sensor networks. Journal of Network and Computer
Applications 155 (2020), 102548.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Privacy-Preserving Greedy Link Scheduling for Wireless Networks Proceedings on Privacy Enhancing Technologies YYYY(X

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

)

[3] Wei Cui, Kaiming Shen, and Wei Yu. 2019. Spatial deep learning for wireless
scheduling. ieee journal on selected areas in communications 37, 6 (2019), 1248–
1261.

[4] Ahmed Douik, Hayssam Dahrouj, Tareq Y Al-Naffouri, and Mohamed-Slim
Alouini. 2017. Distributed hybrid scheduling in multi-cloud networks using
conflict graphs. IEEE Transactions on Communications 66, 1 (2017), 209–224.

[5] Peng Du and Yuan Zhang. 2016. A new distributed approximation algorithm
for the maximum weight independent set problem. Mathematical Problems in
Engineering 2016 (2016).

[6] Paul Erdős and Alfréd Rényi. 1961. On the strength of connectedness of a random
graph. Acta Mathematica Hungarica 12, 1 (1961), 261–267.

[7] Fuad A Ghaleb, Anazida Zainal, Murad A Rassam, and Fathey Mohammed. 2017.
An effective misbehavior detection model using artificial neural network for
vehicular ad hoc network applications. In 2017 IEEE conference on application,
information and network security (AINS). IEEE, 13–18.

[8] Manan Gupta, Anil Rao, Eugene Visotsky, Amitava Ghosh, and Jeffrey G An-
drews. 2020. Learning link schedules in self-backhauled millimeter wave cellular
networks. IEEE Transactions on Wireless Communications 19, 12 (2020), 8024–
8038.

[9] Libin Jiang and Jean Walrand. 2008. A distributed algorithm for optimal through-
put and fairness in wireless networks with a general interference model. (2008).

[10] Changhee Joo. 2008. A local greedy scheduling scheme with provable perfor-
mance guarantee. (2008), 111–120.

[11] Changhee Joo, Xiaojun Lin, Jiho Ryu, and Ness B Shroff. 2015. Distributed greedy
approximation to maximumweighted independent set for scheduling with fading
channels. IEEE/ACM Transactions on Networking 24, 3 (2015), 1476–1488.

[12] Changhee Joo, Xiaojun Lin, and Ness B Shroff. 2009. Greedy maximal match-
ing: Performance limits for arbitrary network graphs under the node-exclusive
interference model. IEEE Trans. Automat. Control 54, 12 (2009), 2734–2744.

[13] Changhee Joo, Xiaojun Lin, and Ness B Shroff. 2009. Understanding the capac-
ity region of the greedy maximal scheduling algorithm in multihop wireless
networks. IEEE/ACM Transactions on Networking 17, 4 (2009), 1132–1145.

[14] Changhee Joo and Ness B Shroff. 2011. Local greedy approximation for schedul-
ing in multihop wireless networks. IEEE Transactions on Mobile Computing 11, 3
(2011), 414–426.

[15] Brian Kim, Yalin E Sagduyu, Kemal Davaslioglu, Tugba Erpek, and Sennur Ulukus.
2021. Channel-aware adversarial attacks against deep learning-based wireless
signal classifiers. IEEE Transactions on Wireless Communications 21, 6 (2021),
3868–3880.

[16] Joongheon Kim, Giuseppe Caire, and Andreas F Molisch. 2015. Quality-aware
streaming and scheduling for device-to-device video delivery. IEEE/ACM Trans-
actions on Networking 24, 4 (2015), 2319–2331.

[17] Jing Yang Koh, Derek Leong, GarethW Peters, Ido Nevat, andWai-ChoongWong.
2017. Optimal privacy-preserving probabilistic routing for wireless networks.
IEEE Transactions on Information Forensics and Security 12, 9 (2017), 2105–2114.

[18] Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and Huashuo
Zhang. 2019. Exactly solving the maximum weight independent set problem
on large real-world graphs. In 2019 Proceedings of the Twenty-First Workshop on
Algorithm Engineering and Experiments (ALENEX). SIAM, 144–158.

[19] Mathieu Leconte, Jian Ni, and Rayadurgam Srikant. 2009. Improved bounds on
the throughput efficiency of greedy maximal scheduling in wireless networks.
(2009), 165–174.

[20] Yi Liu, JQ James, Jiawen Kang, Dusit Niyato, and Shuyu Zhang. 2020. Privacy-
preserving traffic flow prediction: A federated learning approach. IEEE Internet
of Things Journal 7, 8 (2020), 7751–7763.

[21] Antonio G Marques, Nikolaos Gatsis, Georgios B Giannakis, N Zorba, C Skianis,
and C Verikoukis. 2011. Optimal cross-layer design of wireless fading multi-hop
networks. Cross Layer Designs in WLAN Systems (2011), 1–44.

[22] Mohamed Seif Eldin Mohamed, Wei-Ting Chang, and Ravi Tandon. 2021. Privacy
amplification for federated learning via user sampling and wireless aggregation.
IEEE Journal on Selected Areas in Communications 39, 12 (2021), 3821–3835.

[23] Jian Ni and R Srikant. 2009. Distributed CSMA/CA algorithms for achieving
maximum throughput in wireless networks. (2009), 250–250.

[24] Elif Ustundag Soykan, Gurkan Soykan, Emrah Tomur, and Mete Akgün. 2023. A
Privacy-Preserving Scheme For Smart Grid Using Trusted Execution Environ-
ment. IEEE Access (2023).

[25] Jian Tang, Guoliang Xue, Christopher Chandler, and Weiyi Zhang. 2006. Link
scheduling with power control for throughput enhancement in multihop wireless
networks. IEEE Transactions on Vehicular Technology 55, 3 (2006), 733–742.

[26] Xiangyun Tang, Meng Shen, Qi Li, Liehuang Zhu, Tengfei Xue, and Qiang
Qu. 2023. PILE: Robust Privacy-Preserving Federated Learning via Verifiable
Perturbations. IEEE Transactions on Dependable and Secure Computing (2023).

[27] Taha Ameen ur Rahman, Mohamed S Hassan, and Mahmoud H Ismail. 2020. A
Queue-Length Based Approach to Metropolized Hamiltonians for Distributed
Scheduling in Wireless Networks. In 2020 Wireless Telecommunications Sympo-
sium (WTS). IEEE, 1–6.

[28] Kilian Verhetsela, Jeanne Pellerina, Amaury Johnena, and Jean-Francois
Remaclea. 2017. Solving the Maximum Weight Independent Set Problem: Ap-
plication to Indirect Hexahedral Mesh Generation. 26th International Meshing
Roundtable, Research Notes, Barcelona, Spain (2017).

[29] Hao Wang, Guangjie Han, Wenbo Zhang, Mohsen Guizani, and Sammy Chan.
2019. A probabilistic source location privacy protection scheme in wireless sensor
networks. IEEE Transactions on Vehicular Technology 68, 6 (2019), 5917–5927.

[30] Sulei Wang, Zhe Chen, Yuedong Xu, Qiben Yan, Chongbin Xu, and Xin Wang.
2019. On user selective eavesdropping attacks in MU-MIMO: CSI forgery and
countermeasure. In IEEE INFOCOM 2019-IEEE Conference on Computer Commu-
nications. IEEE, 1963–1971.

[31] Xue Yang, Yan Feng, Weijun Fang, Jun Shao, Xiaohu Tang, Shu-Tao Xia, and
Rongxing Lu. 2022. An accuracy-lossless perturbation method for defending
privacy attacks in federated learning. In Proceedings of the ACM Web Conference
2022. 732–742.

[32] Shuai Zhang, Wenlong Shen, Max Zhang, Xianghui Cao, and Yu Cheng. 2019.
Experience-driven wireless D2D network link scheduling: A deep learning ap-
proach. In ICC 2019-2019 IEEE International Conference on Communications (ICC).
IEEE, 1–6.

[33] Zhongyuan Zhao, Gunjan Verma, Chirag Rao, Ananthram Swami, and Santiago
Segarra. 2021. Distributed scheduling using graph neural networks. ieee journal
on selected areas in communications 37, 6 (2021), 4720–4724.

[34] Zhongyuan Zhao, Gunjan Verma, Chirag Rao, Ananthram Swami, and Santiago
Segarra. 2022. Link scheduling using graph neural networks. IEEE Transactions
on Wireless Communications (2022).

[35] Zhongyuan Zhao, Gunjan Verma, Ananthram Swami, and Santiago Segarra. 2022.
Delay-Oriented Distributed Scheduling Using Graph Neural Networks. (2022),
8902–8906.

13

	Abstract
	1 Introduction
	2 Related Work
	2.1 Link scheduling for wireless networks
	2.2 Privacy in wireless networks

	3 Background
	3.1 Link scheduling for wireless networks
	3.2 Conflict graphs
	3.3 Privacy concerns with existing algorithms

	4 PriLink: Privacy-preserving Greedy Link Scheduling Algorithm Design
	4.1 System Model and Assumptions
	4.2 Adversary Model
	4.3 PriLink Base Algorithm
	4.4 PriLink Privacy Tolerance Algorithm

	5 Performance Evaluation
	5.1 Wireless Network Simulation Methodology
	5.2 Performance Metrics
	5.3 Evaluation Results

	6 Limitations & Future Work
	7 Conclusion
	References

